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1. INTRODUCTION

The concept of best quadrature was introduced by Sard in [5] and elabo
rated on by him in [6]. More recently Schoenberg [8] has presented a general
theory of this type of quadrature and the interested reader is referred to that
paper for details and further references.

The present paper is concerned with two problems which arise for second
order best quadrature formulae. The main problem is that of convergence,
and it is shown, with suitable assumptions, that the formula has O(h5/ 2) con·
vergence in general and O(h4) convergence for a particular class of functions.
The proof of these results utilizes in an essential fashion the Rodrigues func
tion which was introduced by Schoenberg in [8].

Sard in [6] presents tables of the weights for his equal interval formulae
together with the L 2-norm of the corresponding Peano kernels. The other
objective in this paper is to give simple explicit formulas for each of these.

2. PRELIMINARY DEFINITIONS AND RESULTS

The set of real numbers to, t1 '00" tN will be called quadrature points or
knots and will satisfy

0= to < t1 '00" < tN = 1, where N> 1; let hj = tj+l - t j , j = 0,1, N - 1.

* Present address: Department of Mathematics, Cartmel College, University of
Lancaster, Bailrigg, Lancaster, England.
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BEST QUADRATURE

The truncated power Kn+ is defined for n = 1, 2,... , by

Kn+(s)=snJn!, s~o

= ° otherwise.

Let WE qo, 1], x E C2[0, 1]. The equation

1 Nf wet) x(t) dt = L Hjx(t j) + R(x)
o j~O
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(2.1)

will be called a best quadrature formula of second order with remainder R if

(i) R(x) = s: k(t) X(2)(t) dt, (2.2)

where k is the Peano kernel for the quadrature formula and is given by

1 N
k(t) = f w(s) K1+(s - t) ds - L H jK1+(tj - t), (2.3)

o j~O

(ii) the weights Ho , HI'"'' HN are chosen so as to minimize

.1

J [k(t)]2 dt.
o

Clearly, from (2.1), (2.2), the weights must satisfy

(2.4)

.1 N

J wet) t r dt = L H;t/,
o j=O

r = 0, I. (2.5)

Intimately connected with best quadrature formulas are natural splines.
For second order quadrature the relevant spline is the natural cubic spline
with the quadrature points as knots. The theory of splines is dealt with in
detail in [1]; it will be sufficient to state that a natural cubic spline with the
knots to, t1 , .•• , tN is in C2(-00, (0) and such that outside (to, tN ) it is linear
and in each interval (t j , t j +1),j = 0, I, N - I it is at most a cubic. It is
shown in [I] that a natural cubic spline is determined uniquely by its values at
the knots. Further, from [I], if y is the natural cubic spline with the knots
to, t1 , ... , tN , then

2\ + Al = 3[to , t1] y,

o - CXj) Aj- 1 + 2Aj + CXjAi+l

= 3(1 - CXj)[t;_I, tj]y + 3cxj[tj , tm ]y, j = I, I, N - 1 (2.6)

AN - 1 + 2AN = 3[tN _ 1 , tN ] Y,
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where, for simplicity, Ai = y(ll(ti), Oii = hj-1/(hj _ l + hi) and [tf , ti+l] Y
denotes, in Ostrowski's notation, the first divided difference of y at the knots
ti , t£+1 . The cardinal natural cubic spline L; is a natural cubic spline such that

j = 0, 1, N.

The last definition which will be made is of Tr , Ur • These are the r-th degree
Chebyshev polynomials of the first and second kinds each with argument -2.

The following is a special case of a theorem which was proved by
Schoenberg in [7] and generalized by him in [8].

THEOREM 2.1. A best quadrature formula of second order integrates
exactly any natural cubic spline which has the quadrature points as knots.

The following is an immediate consequence of this theorem and the defini
tion of the cardinal cubic spline.

i = 0, 1, N.

COROLLARY 2.1.1. The quadrature weights in (2.1) are given by

Hi = £: wet) Li(t) dt,

A less obvious result is

COROLLARY 2.1.2.

£: [k(t)]2 dt = £: w(t)[z(t) - yo(t)] dt,

where

(2.7)

z(t) = II w(s)K3+(s- t)ds - K3+(-t)r(1- s)w(s)ds
o 0

1

- K3+(1 - t) I
o

sw(s) ds (2.8)

an'll Yo is the natural cubic spline which agrees with z at the knots.

(The function z - Yo is the Rodrigues function which was introduced in [8]
by Schoenberg.)

Proof

Let u = z - v where z is defined by (2.8) and

N 1

vet) = L H j K3+(tj - t) - K3+(-t) J(1 - s)w(s)ds
j~O 0

1
- K3+(1 - t) I

o
sw(s) ds.
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It is easily verified with the aid of (2.5) that v is in fact a natural cubic spline,
whence R(v) = o. Further it is seen that U

(2
) = k; consequently,

( [k(t)]2 dt = R(u) = R(z - v) = R(z).

It remains to take Yo as stated in the corollary; for then, as R( Yo) = 0,

.1

R(z) = R(z - Yo) = J0 w(t)[z(t) - yo(t)] dt.

A proof of the next theorem will be found in [4]

THEOREM 2.2. Let x E C4[0, I], and let y be the natural cubic spline such
that

yUi) = x(ti ), i = 0, 1, N.

If X
(2 )(0) = X

(2 )(l) = 0, then, with the uniform norm on [0, 1],

where M = II xl!) II and h = max(ti+l - ti ).

The next lemma is a consequence of a result proved in [2].

LEMMA 2.1. If ao , a1 , •.• , bN- 1 , bN are numbers which satisfy

2ao + a1 = bo ,

aj_1 + 4aj + aj+l = bj , j = I, 1, N - I,

aN- 1 + 2aN = bN ,

then
N

ao = -! L bkTN-k/UN-l,
k=O

N

aN = -! L b"Tk/UN_1 •
k~O

The final result which will be needed will now be proved.

LEMMA 2.2. If pet) = [(1 - t)3 ao+ t3aN]/6, and if z is the natural cubic
spline which agrees with z at the knots, then

1f [p(2\t) - Z(2)(t)]2 dt < Hhoa02 + hN_1aN2+ (ho + hN- 1) I aOaN I 2-N}.
o

Proof Two careful integration by parts shows that

r [p(2\t) - /2)(t)]2 dt = aN[/I)(l) - Z(I)(l)] - ao[ph)(O) - zh)(O)]. (2.9)
o
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Let Z(l)(t1) = Aj, P(l)(t1) = 71"), j = 0, I, N, and so p(ll(l) = 7I"N,
p(l)(O) = 71"0 . Now (2.6) can be rewritten

2(Ao - 71"0) + (AI - 71"1) = !hoao

(l - aJ(A1-1 - 71"1-1) + 4(A) - 'TT1) + aPHl - 'TTHl) = 0, j = I, I, N - I,

(AN- I - 'TTN-I) + 2(AN - 7I"N) = -ihN-iaN .

The use of a result in [3) produces the inequalities

I Ao - 71"0 I < Hho Iao I + hN- I IaN I2-N
],

I AN - 7I"N I < Hho Iao I 2-N + hN- I I aN I].

The proof of the lemma is completed by inserting these inequalities in (2.9).

3. EQUAL INTERVAL QUADRATURE

In this section it will be assumed that

wet) = I, 0 ~ t ~ 1, and t i = ih, i = 0, I, N, where h = liN. (3.1)

THEOREM 3.1.

(i) Ho = H N = ih[1 + HI - TN)IUN _ I ),

(ii) Hi = h[1 - HUH + UN-i-I)/UN_I], i = 1,1, N - I,
1

(iii) J0 [k(t))2 dt = Tl4h4[i + th(l - TN)IUN-I]·

Proof If y is a natural cubic spline with the knots defined by (3.1) then,
from the Euler-Maclaurin sum formula,

1 N-IJyet) dt = h [!y(0) + L y(jh) + !Y(l)] - hh2[/I)(t)]~, (3.2)
o )=1

whence, when y = L o , it follows that

H o = th - -hh2[L~I)(l) - L~I)(O)). (3.3)

For simplicity let '\; = L~I)(jh), then from (2.6) with a1 = t,j = I, I, N - I,

2Ao + Al = -3Ih, Ao + 4.\1 + .\2 = -3Ih,

Ai - I + 4.\i + Am = 0, i = 2, I, N - I, (3.4)

AN- I + 2.\N = O.
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These equations can be solved for Ao , AN , by the use of Lemma 2.1, to give

When these are substituted in (3.3) the expression for H o will be obtained
after some simple manipulation. By symmetry, H N = Ho •

The calculation of Hi' i = 1, 1, N - 1 proceeds in the same fashion and
will not be given.

In order to prove (iii) use will be made again of the Euler-Maclaurin
formula. From corollary 2.1.2 it is necessary to calculate

where

I: [z(t) - yo(t)] dt, (3.5)

z(t) = (1 - t)4/24 - (1 - t)3/12 = (t4 - 2t3+ 2t - 1)/24 (3.6)

and Yo is the natural cubic spline which agrees with z at the quadrature points.
It follows with the use of the Euler-Maclaurin sum formula that

Let, for convenience, Ai = y~l)(ti)' ~i = Zll)(ti), i = 0, 1, N. Then it is
easily verified that (2.6) can be written (again (Xi = t) as

2(~0 - Ao) + (~l - AI) = h3/24,

(~i-l - Ai-I) + 4(~i - Ai) + ('i+l - AHI) = 0,

('N-I - AN-I) + 2('N - AN) = -h3/24.

Whence, with the use of Lemma 2.1,

j = 1,1, N - 1,

The result follows when these are substituted in (3.7).

COROLLARY 3.1.1.

i = 0, 1, N,
.1

J [k(t)]2 dt = O(h4)
o

as h -+ 0.

The proof is straightforward and is omitted, as is the proof of the next
result.
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COROLLARY 3.1.2.
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H;-1 + 4Hi + Hi +1 = 6h, i = 2, I, N - 2. (3.8)

This provides an alternative method for calculating the internal quadrature
weights. For it is easy to see that

Thus if these equations are adjoined to (3.8) the result will be a tridiagonal
set of linear algebraic equations for HI, ... , H N - 1 • When these have been
calculated, H o , H N can be found from

4. CONVERGENCE

The general second order quadrature formula (2.1) will be considered in
this section and the quadrature points will be required to satisfy only

o = 10 < 11 < ... < IN = 1.

The norms which will be used are defined by

j
,l

II . II = max I . I, II . II: = 0 I . 12 dt.
0':;1«1

LEMMA 4.1. J~ [k(t)]2 dt = 3h4
11 w 11

2/64.

Proof From Corollary 2.1.2,

r[k(t)]2 dt :::;:; II w II . II z - Yo II·
o

Now it is easily verified that Z(2)(0) = Z(2)(1) = 0 (in fact this property was
built in to z). Thus, from Theorem 2.2,

The result follows.

The convergence of Sard's second order best quadrature formula can now
be proved



BEST QUADRATURE 473

THEOREM 4.1. If x E C4[0, I], M = II X(4) II and R is the remainder given
by (2.2), then IR(x) I :s;; Kh5 / 2, where K is a constant.

Proof Let p be as in Lemma 2.2 with ao = X(2)(0), aN = X(2l(I).
Now

R(x) = R(x - p) + R(p) = R(x - P - y) + R(p - z), (4.1)

where y and z are the natural cubic splines which agree with x - p and p,
respectively, at the quadrature points. Hence, with the use of Schwartz's
inequality the following inequality holds:

I R(x) I :s;; I R(x - P - y)[ + I R(p - z)1 ,

which gives

1R(x) I :s;; II k 112 [[I X(2) - p(2) - y(2) 112 + II p(2) - Z(2) 1121. (4.2)

But

X(2)(0) - p(2)(0) = X (2)(l) - p(2)(l) = 0;

consequently from Theorem 2.2,

(4.3)

Further, Lemma 2.2 gives

II p(2) - Z(2) II~ :s;; l[ho I x(2)(0)1 2+ hN -
1

I x(2)(1)1 2

+ (ho+ hN - 1) 1 X(2)(0) x(2)(I)\ 0.2-N
]. (4.4)

It remains to note that

II . 112 :s;; II . II ,
then the insertion of (4.3), (4.4) in (4.2) together with the result of Lemma 4.1
completes the proof of the theorem.

COROLLARY 4.1.

If, in addition, X (2)(0) = X(2)(l) = 0, then

30I R(x) [ ::(~ M . II w II h4•

This follows from the proof of the theorem with (4.2) replaced by

I R(x)1 :s;; II k 112 • II X(2) - p(2) - y(2) 112 .
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5. REMARKS

It is clear from the proof of convergence that the Rodrigues function was
essential to the argument. A systematic use of this function together with
convergence estimates for generalized splines should provide a simple way
of proving the convergence of the optimum quadrature formulae discussed
in [8].
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